Reduction of Nitric Acid to Hydroxylamine at Glassy Carbon Surfaces Modified by the Reduction of p-Phenylenediamine and p-Aminophenol in 1.0 M Nitric Acid A Scanning Electrochemical Microscopy Study
نویسندگان
چکیده
The scanning electrochemical microscope ~SECM! was used to study the electrochemical reduction of nitric acid to hydroxylamine at modified glassy carbon ~GC! electrodes. The GC surface was modified by holding it at a negative potential in solutions of p-aminophenol, or p-phenylenediamine in 1.0 M nitric acid. The generated products were detected in generation/collection experiments with an SECM Pt ultramicroelectrode. The films that form on GC, apparently polymers of a quinone imine intermediate, can also be grown under similar conditions on indium tin oxide ~ITO! coated glass electrodes and appeared as dark orange-brown films. Atomic force microscope imaging revealed a highly porous structure. SECM and cyclic voltammetry studies showed that as a result of this surface filming, the GC electrodes exhibited an increase of at least 1 V in the hydrogen overpotential relative to the unmodified surface and the efficiency of the electrochemical reduction of nitric acid to hydroxylamine was dramatically enhanced. Bulk electrolysis of nitric acid at carbon in the presence of p-phenylenediamine resulted in a 75 to 85% current efficiency for hydroxylamine production at current densities of 0.5 to 0.8 A/cm. This procedure proved to be useful for the large-scale electrochemical production of hydroxylamine from nitric acid at an electrode other than liquid mercury. © 2001 The Electrochemical Society. @DOI: 10.1149/1.1389343# All rights reserved.
منابع مشابه
Application of copper oxide nanoparticles modified glassy carbon electrode for electrocatalytic oxidation of methanol
Copper nanoparticles were fabricated by electro-reduction of CuSO4solution in the presence of cetyltrimethylammonium bromide (CTAB) cationic surfactant as an additive through potentiostatic method. The prepared copper nanoparticles were characterized by scanning electron microscopy (SEM) and electrochemical methods. The SEM images reveal that the nanoparticles with diameters at about 70 n...
متن کاملElectrochemical Detection of Hydrazine Using a Copper oxide Nanoparticle Modified Glassy Carbon Electrode
Metallic copper nanoparticles modified glassy carbon electrode is fabricated by reduction of CuSO4 in the presence of cetyltrimethylammonium bromide (CTAB) through potentiostatic method. As-prepared nanoparticles are characterized by scanning electron microscopy and electrochemical methods. Copper oxide modified glassy carbon electrode (nano-CuO/MGCE) is prepared using consecutive potential sca...
متن کاملA New Hydroxylamine Electrochemical Sensor Based on an Oxadiazol Derivative and Multi-wall Carbon Nanotuhes Modified Glassy Carbon Electrode
A new hydroxylamine sensor has been fabricated by immobilizing oxadiazol denvative at the surface ol aglassy carbon electrode (GCE) modified by multi-wall carbon nanotube (MIVCNT). The adsorbed thin Illms oroxadiazol derivative on the MWCNT modified GCE show a pair of peaks with surface confined characierisnus.The oxadiazol derivative MWCNI (OMWCNT) modified GCE shows highly catalytic activity ...
متن کاملFabrication of Nano Poly Cresol Red over Glassy Carbon Electrode and its Application in Selective Determination of Uric acid in the Presence of Ascorbic Acid
A selective electrochemical method for the determination of uric acid was developed by using nano poly cresol red modified glassy carbon electrode. This new material has been characterized by Scanning Electron Microscopy, cyclic voltammetry and Differential pulse voltammetry. This modified electrode shows excellent electrocatalytic activity towards the oxidation of uric acid in the presence of ...
متن کاملElectrochemical determination of gallic acid in Camellia sinensis, Viola odorata, Commiphora mukul, and Vitex agnus-castus by MWCNTs-COOH modified CPE
Gallic acid (GA) is the main phenolic antioxidant which has been subjected of many studies because of its important biological properties including anticancer, anti-inflammatory and antimicrobial activities as well as free radicals scavenger and cardiovascular diseases protector. Hereupon, fabricating a selective and sensitive sensor for GA detection and measurement is an important issue. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001